96.6k views
1 vote
A cone has a slant height of 10 inches and a diameter of 12 inches. What is the surface area of the cone?

User Caktux
by
7.6k points

1 Answer

2 votes

Answer:
S=96\pi inches^2, or approximately 301.59 inches^2.

The surface area of the cone is 96(pi) square inches.

Explanation:

The surface area of a cone is found using the formula:
S=\pi √(r^2+h^2), where r is the radius and h is the height. With slant height, this is:
S=\pi r^2 +\pi rl

The diameter is twice the length of the radius, so divide the diameter of 12 inches by 2, and r = 6 inches.

We are given the slant height: 10 inches.

Plug these into the surface area equation:


S=\pi (6)^2+\pi (6)(10)

Simplify:


S=\pi (36)+\pi (60)\\S=36\pi+60\pi

Add like terms and:


S=96\pi square inches

User ShrapNull
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.