Answer:
To calculate the 99% confidence interval for a proportion (p-hat), you can use the formula:
![\[ \text{Confidence Interval} = \text{p-hat} \pm Z * \sqrt{\frac{\text{p-hat} * (1 - \text{p-hat})}{n}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bs95kj7ia5cdevp2qnyav78ufii4snwt38.png)
Where:

Let's plug in the values and calculate:
![\[ \text{Confidence Interval} = 0.55 \pm 2.576 * \sqrt{(0.55 * (1 - 0.55))/(1000)} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rkmua47lssx026gitrplpdtl380hok41nx.png)
Calculating the expression inside the square root:
![\[ \sqrt{(0.55 * 0.45)/(1000)} \approx 0.0206 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ws3u95pvoi8r0yozkdf6npy9rp58mcukib.png)
Now, calculate the confidence interval:
![\[ \text{Lower Bound} = 0.55 - 2.576 * 0.0206 \approx 0.5004 \]\\\[ \text{Upper Bound} = 0.55 + 2.576 * 0.0206 \approx 0.5996 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1ee0v73fyyz1bh5lsk326hbxr6hk7zi25u.png)
So, the 99% confidence interval for the given data set is approximately \(0.5004\) to \(0.5996\). This means we can be 99% confident that the true population proportion lies within this interval.
Explanation: