180k views
2 votes
2
i) (a² + b²) (- a² + b²)

User Djpeinado
by
8.3k points

1 Answer

0 votes

Hello!

Answer:


\Large \boxed{\sf - a^(4) + b^(4)}

Explanation:

→ We want to simplify this expression:


\sf (a^2 + b^2 ) (- a^2 + b^2 )

Distribute the expression:


\sf a^2 (- a^2 + b^2 )+ b^2 (- a^2 + b^2 )


\sf a^2 (- a^2)+ a^2 (b^2)+ b^2 (- a^2) + b^2(b^2 )

Simplify the expression:


\sf - a^(2+2 )+ ab^(2 +2) + (-ab^(2+2)) + b^(2+2)


\sf - a^(4)+ ab^(4) -ab^(4) + b^(4)


\boxed{\sf - a^(4) + b^(4)}

Conclusion:

The expression (a²+b²) (-a²+b²) is equal to -a⁴ + b⁴.

User Maksimov
by
8.4k points

Related questions

asked Apr 8, 2024 102k views
Mooreds asked Apr 8, 2024
by Mooreds
8.1k points
1 answer
4 votes
102k views
asked Feb 17, 2024 90.7k views
Jacky Nguyen asked Feb 17, 2024
by Jacky Nguyen
7.5k points
1 answer
1 vote
90.7k views