131,054 views
7 votes
7 votes
Please answer and explain the link below

Please answer and explain the link below-example-1
User MaksymB
by
2.7k points

1 Answer

17 votes
17 votes

Answer:

See explanation.

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = \left \{ {{√(x + 1), \ x < 3} \atop {5 - x, \ x \geq 3}} \right.

Step 2: Find Right Limit

  1. Substitute in variables [Right-Side Limit]:
    \displaystyle \lim_(x \to 3^+) 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 3^+) 5 - x = 5 - 3
  3. Subtract:
    \displaystyle \lim_(x \to 3^+) 5 - x = 2

∴ the right-side limit equals 2.

Step 3: Find Left Limit

  1. Substitute in variables [Left-Side Limit]:
    \displaystyle \lim_(x \to 3^-) √(x + 1)
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 3^-) √(x + 1) = √(3 + 1)
  3. [√Radical] Add:
    \displaystyle \lim_(x \to 3^-) √(x + 1) = √(4)
  4. [√Radical] Evaluate:
    \displaystyle \lim_(x \to 3^-) √(x + 1) = 2

∴ the left-side limit equals 2.

Step 4: Find Limit

The right and left-side limits are equal.


\displaystyle \lim_(x \to 3) f(x) = 2

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

Book: College Calculus 10e

User Rjak
by
2.8k points