82.9k views
4 votes
Find the derivative of the function. Simplify and express the answer using positive exponents only.

y = (x² - 8)(x + 1)

1 Answer

3 votes

Answer:


\frac{\text{d}y}{\text{d}x}&=3x^2+2x-8

Explanation:

To find the derivative of the function y = (x² - 8)(x + 1), we can use the product rule.


\boxed{\begin{array}{l}\underline{\sf Product\;Rule\;for\;Differentiation}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\frac{\text{d}y}{\text{d}x}=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}\\\\\end{array}}


\textsf{Let}\;u = x^2 - 8


\textsf{Let}\;v = x+1

Differentiate u and v with respect to x:


\frac{\text{d}u}{\text{d}x}=2 \cdot x^(2-1)-0=2x


\frac{\text{d}v}{\text{d}x}=x^(1-1)+0=x^0=1

Substitute the expressions into the product rule formula:


\frac{\text{d}y}{\text{d}x}&=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}


\frac{\text{d}y}{\text{d}x}&=(x^2-8)\cdot 1+(x+1)\cdot 2x


\frac{\text{d}y}{\text{d}x}&=(x^2-8)+2x(x+1)

Simplify:


\frac{\text{d}y}{\text{d}x}&=x^2-8+2x^2+2x


\frac{\text{d}y}{\text{d}x}&=3x^2+2x-8

Therefore, the derivative of the given function is:


\large\boxed{\frac{\text{d}y}{\text{d}x}&=3x^2+2x-8}


\hrulefill

Differentiation Rules


\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $x^n$}\\\\If $y=x^n$, then $\frac{\text{d}y}{\text{d}x}=nx^(n-1)$\\\end{minipage}}


\boxed{\begin{minipage}{4 cm}\underline{Differentiating $ax$}\\\\If $y=ax$, then $\frac{\text{d}y}{\text{d}x}=a$\\\end{minipage}}


\boxed{\begin{minipage}{4cm}\underline{Differentiating a constant}\\\\If $y=a$, then $\frac{\text{d}y}{\text{d}x}=0$\\\end{minipage}}

User Nirajan Poudel
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories