169k views
0 votes
Can anyone help me this……

Can anyone help me this……-example-1
User Gef
by
8.3k points

1 Answer

4 votes

Answer:

See below for proof.

Explanation:

Given equation:


\left((4^5\cdot64^3\cdot2^3)/(8^5\cdot(128)^2)\right)^{(1)/(2)}=2

To prove the given equation, use the laws of exponents to combine like terms and simplify.


\boxed{\begin{array}{rl}\underline{\sf Laws\;of\;Exponents}\\\\\sf Product:&a^m * a^n=a^(m+n)\\\\\sf Power\;of\;a\;Power:&(a^m)^n=a^(mn)\\\\\sf Negative\;Exponent:&a^(-m)=(1)/(a^m)\\\\\end{array}}

Begin by rewriting all the bases using prime factorization:


4=2^2


64=2^6


8=2^3


128=2^7

Therefore:


\left((4^5\cdot64^3\cdot2^3)/(8^5\cdot(128)^2)\right)^{(1)/(2)}=\left(((2^2)^5\cdot(2^6)^3\cdot2^3)/((2^3)^5\cdot(2^7)^2)\right)^{(1)/(2)}

Apply the power of a power rule:


=\left((2^(10)\cdot2^(18)\cdot2^3)/(2^(15)\cdot2^(14))\right)^{(1)/(2)}

Now all the bases are the same, apply the product rule:


\begin{aligned}&=\left((2^(10+18+3))/(2^(15+14))\right)^{(1)/(2)}\\\\&=\left((2^(31))/(2^(29))\right)^{(1)/(2)}\end{aligned}

Apply the negative exponent rule to bring 2²⁹ to the numerator:


=\left(2^(31) \cdot 2^(-29)\right)^{(1)/(2)}

Apply the product rule:


\begin{aligned}&=\left(2^(31-29)\right)^{(1)/(2)}\\\\&=\left(2^(2)\right)^{(1)/(2)}\end{aligned}

Finally, apply the power of a power rule:


\begin{aligned}&=2^{2\cdot(1)/(2)}\\\\&=2^(1)\end{aligned}

As a¹ = a, then:


=2

Hence, we have proved that:


\left((4^5\cdot64^3\cdot2^3)/(8^5\cdot(128)^2)\right)^{(1)/(2)}=2


\hrulefill

As one calculation:


\begin{aligned}\left((4^5\cdot64^3\cdot2^3)/(8^5\cdot(128)^2)\right)^(\frac12)&=\left(((2^2)^5\cdot(2^6)^3\cdot2^3)/((2^3)^5\cdot(2^7)^2)\right)^(\frac12)\\\\&=\left((2^(10)\cdot2^(18)\cdot2^3)/(2^(15)\cdot2^(14))\right)^(\frac12)\\\\&=\left((2^(10+18+3))/(2^(15+14))\right)^(\frac12)\\\\&=\left((2^(31))/(2^(29))\right)^(\frac12)\\\\&=(2^(31)\cdot 2^(-29))^(\frac12)\\\\&=(2^(31-29))^{(1)/(2)}\\\\&=(2^(2))^(\frac12)\\\\&=2^(2\cdot\frac12)\\\\&=2^(1)\\\\&=2\end{aligned}

User Earo Wang
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.