218k views
5 votes
Given that 3 log₃ (2x – 1) = 2 + log₃ (14x – 25)

show that
2x³ – 3x² – 30x + 56 = 0
show that -4 is a root of this cibic equation

User Impirator
by
7.8k points

1 Answer

1 vote

Answer:

Hi,

Explanation:


3*log_3(2x-1)=2+log_3(14x-25)\\\\log_3((2x-1)^3)-log_3(14x-25)=2\\\\log_3(((2x-1)^3)/(14x-25)) =2\\\\((2x-1)^3)/(14x-25)=9\\\\8x^3-12x^2+6x-1=126x-225\\\\8x^3-12x^2-120x+224=0\\\\P(x)=2x^3-3x^2-30x+56=0\\\\P(-4)=2*(-4)^3-3*(-4)^2-30*(-4)+56\\=-128-48+120+56\\=-176+176\\=0\\

-4 is a root of P(x)

User Maxim Danilov
by
8.2k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories