136k views
3 votes
How do I figure this out?

How do I figure this out?-example-1

1 Answer

3 votes

Answer:


\mathrm{The\ second\ and\ fourth\ option\ is\ correct.}\\

Step-by-step explanation:


\mathrm{In\ the\ first\ option,\ triangles\ A\ and\ B\ each\ have\ a\ 51^o\ angle,\ but\ they\ may\ have\ }\\\mathrm{different\ angle\ measures\ for\ other\ two\ angles.\ So,\ this\ does\ not\ satisfy\ AA}\\\mathrm{similarity\ axiom.}


\mathrm{In\ the\ second\ option,\ isosceles\ triangles\ C\ and\ D\ each\ have\ a\ 50^o\ angle,\ which}\\\mathrm{means\ each\ of\ them\ has\ other\ two\ equal\ angles,\ i.e.\ 65^o\ each.\ This\ makes\ all\ of}\\\mathrm{the\ corresponding\ angles\ of\ the\ triangles\ equal,\ hence\ they\ are\ similar.}


\mathrm{In\ the\ third\ option,\ triangle\ E\ has\ a\ 20^o\ angle\ and\ a\ 70^o\ angle.\ This\ means\ the\ }\\\mathrm{third\ angle\ must\ be\ 90^o.\ And,\ triangle\ F\ has\ a\ 60^o\ angle\ and\ a\ 20^o\ angle.\ That}\\\mathrm{means,\ the\ third\ angle\ now\ is\ 100^o.\ So\ the\ corresponding\ angles\ are\ not\ equal\ }\\\mathrm{in\ these\ triangles.\ So\ they\ are\ not\ similar.}


\mathrm{In\ fourth\ option,\ triangle\ G\ has\ a\ 40^o\ angle\ and\ a\ 35^o\ angle.\ This\ means}\\\mathrm{the\ third\ angle\ of\ this\ triangle\ is\ 105^o.\ And\ triangle\ H\ has\ a\ 40^o\ angle\ and\ a}\\\mathrm{105^o\ angle.\ So\ the\ third\ angle\ is\ 35^o.\ Notice,\ triangle\ G\ has\ three\ angles: }\\\mathrm{40^o,\ 35^o\ and\ 105^o.\ Triangle\ H\ also\ has\ the\ same\ angles.\ Hence\ they\ are \ similar. }

User Tdebroc
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories