32.9k views
4 votes
What is the activity coefficient for each ion at the given ionic strength at 25 °C? Activity coefficients at various ionic strengths can be found in this table.

HPO4 2− ( =0.05 M)
Sc3+ (=0.001 M)
Dy3+ ( =0.1 M)
(CH3CH2)3NH+ (=0.01 M)

User Jakob Gade
by
7.6k points

2 Answers

6 votes

Final answer:

The activity coefficient for each ion at the given ionic strength at 25 °C can be calculated using the Debye-Huckel equation.

Step-by-step explanation:

The activity coefficient for each ion at the given ionic strength at 25 °C can be calculated using the Debye-Huckel equation:

log γ± = -0.5zi²√(I/(1 + αai))

Where γ± is the activity coefficient, zi is the charge of the ion, I is the ionic strength, α is the Debye-Huckel limiting law parameter, and ai is the molar concentration of the ion. Using this equation, you can calculate the activity coefficient for each ion at the given ionic strength.

User Sanchit Grover
by
7.9k points
3 votes

Final answer:

The activity coefficient for each ion can be calculated using the Debye-Hückel formula.

Step-by-step explanation:

The activity coefficient for each ion can be calculated using the Debye-Hückel formula:

ln(γ±) = -0.5 * z±² * (I * μ^(1/2)) / (1 + a * d)

Where:

  • ln(γ±) is the natural logarithm of the activity coefficient
  • z± is the charge of the ion
  • I is the ionic strength of the solution
  • μ is the Debye length of the solution
  • a is the ion size parameter
  • d is the mean ion spacing

To calculate the activity coefficient, we need to know the values of the charge, ionic strength, Debye length, ion size parameter, and mean ion spacing for each ion.

User Dennis Ninj
by
8.9k points