9.6k views
5 votes
Prove 1- cos A /1+ cos A = (csc A – cotA)²

1 Answer

4 votes

Answer :

Prove:


\sf ( 1- \cos A)/(1+ \cos A )= (\cosec A - \cot A)^2

Let LHS =
\sf ( 1- \cos A)/(1+ \cos A )

RHS =
\sf (\cosec A - \cot A)^2

We need to Prove that LHS = RHS

Solving LHS:


\sf ( 1- \cos A)/(1+ \cos A ) \\ \\ \sf (( 1- \cos A)(1- \cos A))/((1+ \cos A)(1- \cos A) ) \\ \\ \sf\frac{ { (1- \cos A)}^(2) }{ { 1- \cos }^(2)A } \\ \\ \sf \frac{{(1- \cos A)}^(2)} { \ { \sin}^(2) A} \\ \\ \sf \bigg( { (1 - \cos A)/(\sin A) } \bigg)^(2) \\ \\ \sf {\bigg( (1)/(\sin A) - (\cos A)/(\sin A) \bigg)}^(2) \\ \\ \sf {(\cosec A - \cot A)}^(2)

LHS = RHS

Hence proved!


{\boxed{\sf ( 1- \cos A)/(1+ \cos A )= (\cosec A - \cot A)^2}}

User Vokram
by
7.8k points

Related questions

asked Sep 25, 2024 58.5k views
Dav Clark asked Sep 25, 2024
by Dav Clark
9.0k points
1 answer
5 votes
58.5k views
asked Jan 26, 2024 224k views
Chadwick Meyer asked Jan 26, 2024
by Chadwick Meyer
8.7k points
1 answer
2 votes
224k views