Answer:
To find the points of intersection of the graphs $x=y^4$ and $x+y^2=1-x$, we can set these two equations equal to each other:
$y^4 + y^2 + x = 1 - x$
Rearranging the terms, we have:
$y^4 + y^2 + x + x - 1 = 0$
$y^4 + y^2 + 2x - 1 = 0$
Now, let's substitute $x$ with $y^4$:
$y^4 + y^2 + 2y^4 - 1 = 0$
Combining like terms, we get:
$3y^4 + y^2 - 1 = 0$
This is now a quadratic equation in terms of $y^2$. Let's solve it:
Using the quadratic formula, we have:
$y^2 = \frac{-1 \pm \sqrt{1 - 4(3)(-1)}}{2(3)}$
Simplifying,
$y^2 = \frac{-1 \pm \sqrt{13}}{6}$
Taking the square root of both sides,
$y = \pm \sqrt{\frac{-1 \pm \sqrt{13}}{6}}$
Therefore, the two points of intersection are $\left(\sqrt{\frac{-1 + \sqrt{13}}{6}}, \sqrt{\frac{-1 + \sqrt{13}}{6}}\right)$ and $\left(-\sqrt{\frac{-1 + \sqrt{13}}{6}}, -\sqrt{\frac{-1 + \sqrt{13}}{6}}\right)$.
To find the distance between these two points, we can use the distance formula:
$\text{Distance} = \sqrt{\left(\sqrt{\frac{-1 + \sqrt{13}}{6}} - (-\sqrt{\frac{-1 + \sqrt{13}}{6}})\right)^2 + \left(\sqrt{\frac{-1 + \sqrt{13}}{6}} - (-\sqrt{\frac{-1 + \sqrt{13}}{6}})\right)^2}$
Simplifying,
$\text{Distance} = \sqrt{4\left(\frac{-1 + \sqrt{13}}{6}\right)}$
$\text{Distance} = 2\sqrt{\frac{-1 + \sqrt{13}}{6}}$
Therefore, the ordered pair is $(2, \sqrt{-1 + \sqrt{13}})$.