Answer:
![\displaystyle \lim_(n \to \infty)\left[\sum^n_(k=1)\left\{-0.01\left(-10+(20k)/(n)\right)^2+40\right\} (20)/(n)\right]\; \sf square\;units](https://img.qammunity.org/2024/formulas/mathematics/college/991sm3v6bfmefmwzfzf9op9orz5auhith6.png)
![\displaystyle \lim_(n \to \infty)\left[\sum^n_(k=1)\left((780)/(n)+(80k)/(n^2)-(80k^2)/(n^3)\right)\right]\; \sf square\;units](https://img.qammunity.org/2024/formulas/mathematics/college/3uw41eib76f1m4oq6240jtsf4mb4n7jpl0.png)
793.33 square units
Explanation:
Use the Riemann sum to approximate the area under a curve using a series of rectangles.
A right Riemann sum uses rectangles where the curve of the function f(x) passes through the top-right vertices of the rectangles.
Definite Integral Notation (right Riemann Sum)
The area under the curve of f(x) on the interval [a, b] is represented by:

where:
- Δx is the width of each rectangle.
is the height of each rectangle.
is the right endpoint of each rectangle.- n is the number of rectangles.
The given interval is [-10, 10]. Therefore, a = -10 and b = 10:

As f(x) = -0.01x² + 40 then:

Substituting into the summation formula gives:

Expand the summation:





Therefore, the approximations of the area under the curve are:
![\displaystyle \lim_(n \to \infty)\left[\sum^n_(k=1)\left\{-0.01\left(-10+(20k)/(n)\right)^2+40\right\} (20)/(n)\right]\; \sf square\;units](https://img.qammunity.org/2024/formulas/mathematics/college/991sm3v6bfmefmwzfzf9op9orz5auhith6.png)
![\displaystyle \lim_(n \to \infty)\left[\sum^n_(k=1)\left((780)/(n)+(80k)/(n^2)-(80k^2)/(n^3)\right)\right]\; \sf square\;units](https://img.qammunity.org/2024/formulas/mathematics/college/3uw41eib76f1m4oq6240jtsf4mb4n7jpl0.png)

To find the exact area under the given curve, use the second part of the Fundamental Theorem of Calculus:
![\boxed{\begin{array}{l}\textsf{If}\;\displaystyle \int \text{f}(x)\;\text{d}x=\text{g}(x)+\text{C}\; \textsf{then:}\\\\\displaystyle \int^b_a \text{f}(x)\; \text{d}x=\left[\text{g}(x)\right]^b_a=\text{g}(b)-\text{g}(a)\\\\\textsf{where}\;a\;\textsf{is the lower limit and}\;b\;\textsf{is the upper limit.}\\\end{array}}](https://img.qammunity.org/2024/formulas/mathematics/college/65ekc0tt51n1z866fz65al96vcr5rtixad.png)
Therefore:

Evaluate the integral by using the following integral rules:


Therefore:
![\begin{aligned}\displaystyle \int^(10)_(-10) \left(-0.01x^2+40\right)\:\:\text{d}x&=\left[(-0.01x^(2+1))/(2+1)+40x\right]^(10)_(-10)\\\\&=\left[-(x^(3))/(300)+40x\right]^(10)_(-10)\\\\&=\left(-((10)^(3))/(300)+40(10)\right)-\left(-((-10)^(3))/(300)+40(-10)\right)\\\\&=\left(-(10)/(3)+400\right)-\left((10)/(3)-400\right)\\\\&=-(20)/(3)+800\\\\&=(2380)/(3)\\\\&=793.33\; \sf (2\;d.p.)\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/college/3svlghlwwo1nrkp9b7qso51vh49vfwdyid.png)
Therefore, the exact area under the given curve on the interval [-10, 10] is 793.33 square units (2 d.p.).