Explanation:
The integral of the given expression ∫ (sec^2(t) i + t(t^2 + 1)^7 j + t^4 ln(t) k) dt is:
∫ sec^2(t) i dt + ∫ t(t^2 + 1)^7 j dt + ∫ t^4 ln(t) k dt
= tan(t) i + (1/16) * (t^2 + 1)^8 j + (1/5) * t^5 ln(t) - (1/25) * t^5 k + C
Here, C represents the constant of integration.