80.3k views
0 votes
Given f(x) = x2 - 3x + 4, find
F(x + Dx) - f(x) / Dx

User Iamdave
by
7.8k points

1 Answer

0 votes
Given f(x) = x^2 - 3x + 4, let's calculate the difference quotient:

\[F(x + \Delta x) - f(x) / \Delta x\]

Substitute the function values:
\[F(x + \Delta x) = (x + \Delta x)^2 - 3(x + \Delta x) + 4\]
\[f(x) = x^2 - 3x + 4\]

Now, substitute the values into the difference quotient and simplify:
\[\frac{(x + \Delta x)^2 - 3(x + \Delta x) + 4 - (x^2 - 3x + 4)}{\Delta x}\]

Simplify further:
\[\frac{x^2 + 2x\Delta x + \Delta x^2 - 3x - 3\Delta x + 4 - x^2 + 3x - 4}{\Delta x}\]
\[\frac{2x\Delta x + \Delta x^2 - 3\Delta x}{\Delta x}\]
\[2x + \Delta x - 3\]

As \(\Delta x\) approaches 0, the expression simplifies to \(2x - 3\).

So, the result is \(2x - 3\).

User Hang Du
by
7.5k points

No related questions found