Final answer:
To find the polar coordinates of a point given its rectangular coordinates, use the formulas r = √(x² + y²) and q = arctan(y/x). For the point (-5, -5), the polar coordinates are (5 × √(2), pi/4).
Step-by-step explanation:
To find the polar coordinates of a point given its rectangular coordinates, we use the formulas:
r = √(x² + y²)
q = arctan(y/x)
For the point (-5, -5), the rectangular coordinates are (x, y) = (-5, -5). Using the formulas, we can find the polar coordinates:
r = √((-5)² + (-5)²) = √(50) = 5 × √(2)
q = arctan((-5)/(-5)) = arctan(1) = pi/4
Therefore, the polar coordinates of the point (-5, -5) are (r, q) = (5 × √(2), pi/4).