Answer:
```R
library(randomForest)
library(ggplot2)
# Set seed for reproducibility
set.seed(6522048)
# Load the heart disease dataset
data <- read.csv("path/to/heart_disease_dataset.csv")
# Split the data into training and testing sets
train_index <- sample(1:nrow(data), round(nrow(data)*0.7), replace = FALSE)
train_set <- data[train_index, ]
test_set <- data[-train_index, ]
# Define the predictor variables
predictors <- c("age", "sex", "cp", "trestbps", "chol", "restecg", "exang", "ca")
# Create empty vectors to store the errors
train_errors <- vector("numeric", 150)
test_errors <- vector("numeric", 150)
# Train and test the random forest model with different numbers of trees
for (i in 1:150) {
model <- randomForest(target ~ ., data = train_set, mtry = 3, ntree = i)
train_pred <- predict(model, train_set)
train_errors[i] <- mean(train_pred != train_set$target)
test_pred <- predict(model, test_set)
test_errors[i] <- mean(test_pred != test_set$target)
}
# Create a data frame with the errors and number of trees
df <- data.frame("Number of trees" = 1:150,
"Training error" = train_errors,
"Testing error" = test_errors)
# Plot the errors against the number of trees
ggplot(df, aes(x = `Number of trees`)) +
geom_line(aes(y = `Training error`, color = "Training error")) +
geom_line(aes(y = `Testing error`, color = "Testing error")) +
scale_color_manual(values = c("Training error" = "red", "Testing error" = "blue")) +
labs(x = "Number of trees", y = "Error rate", color = "Error type") +
ggtitle("Random Forest Error Rates for Heart Disease Classification")
```