Answer:
Algorithm 1:
```
Function A1(root)
if root is null:
return 0
else:
left_height = A1(root.left)
right_height = A1(root.right)
return 1 + max(left_height, right_height)
End of function A1
```
Algorithm 2:
```
Function A2(root)
if root is null:
return -1
else:
return 1 + max(A2(root.left), A2(root.right))
End of function A2
```
Both algorithms aim to calculate the height of a binary tree. The height of a binary tree is defined as the number of edges on the longest path from the root to a leaf node.
Let's analyze the function call A2(root) for the given binary tree:
```
1
/ \
2 3
/ \ \
4 5 6
\
7
```
Applying Algorithm 2:
1. A2(1) is called. Since root is not null, we move to the else block.
2. A2(1) returns 1 + max(A2(2), A2(3)).
Now let's calculate A2(2):
1. A2(2) is called. Since root is not null, we move to the else block.
2. A2(2) returns 1 + max(A2(4), A2(5)).
Calculating A2(4):
1. A2(4) is called. Since root is not null, we move to the else block.
2. A2(4) returns 1 + max(A2(null), A2(null)).
Both A2(null) calls return -1.
Calculating A2(5):
1. A2(5) is called. Since root is not null, we move to the else block.
2. A2(5) returns 1 + max(A2(null), A2(7)).
A2(null) returns -1, and A2(7) is a leaf node (no children), so it returns -1 as well.
Returning to A2(2):
1. A2(2) returns 1 + max(1 + max(-1, -1), 1 + max(-1, -1)).
2. A2(2) returns 1 + max(1, 1).
3. A2(2) returns 1 + 1.
4. A2(2) returns 2.
Now let's calculate A2(3):
1. A2(3) is called. Since root is not null, we move to the else block.
2. A2(3) returns 1 + max(A2(null), A2(6)).
A2(null) returns -1, and A2(6) is a leaf node, so it returns -1 as well.
Returning to A2(1):
1. A2(1) returns 1 + max(2, 1).
2. A2(1) returns 1 + 2.
3. A2(1) returns 3.
Therefore, the function called A2(root) for the given binary tree returns 3.