Answer:
(5, 2)
Explanation:
Given the following system of equations;
2x - 2y = 6 ......equation 1.
4x + 4y = 28 ......equation 2.
To get an equivalent equation, we would multiply eqn 1 by 2;
2 * (2x - 2y = 6) = 4x - 4y = 12
The new equivalent system of equations are;
4x - 4y = 12
4x + 4y = 28
Adding the equivalent system of equations, we have;
(4x + 4x) + (-4y + 4y) = (12 + 28)
8x + 0 = 40
8x = 40
x = 40/8
x = 5
Next, we would find the value of y;
2x - 2y = 6
Substituting the value of x, we have;
2(5) - 2y = 6
10 - 2y = 6
Rearranging the equation (collecting like terms), we have;
2y = 10 - 6
2y = 4
y = 4/2
y = 2
Therefore, the solutions to the new system of equations are 5 and 2.
Check:
2x - 2y = 6
Substituting the values, we have;
2(5) - 2(2) = 6
10 - 4 = 6
6 = 6