Answer:
z + 31 x + 4y = 62.
Explanation:
Equation of the 3-d surface S: z = 2y² - 4 x² + x.
Point A = (4,-1,-58) = (x₀, y₀, z₀)
S: z = f(x,y).
fₓ = -8 x + 1, => fₓ (x₀, y₀) = -8×4+1 = -31.
fᵧ = 4 y, => fᵧ (x₀, y₀) = -4.
So the normal vector at A is given by (fₓ, fᵧ, -1) or (-31, -4, -1).
Equation of the plane tangential to the surface is given by:
z - z₀ = fₓ (x₀, y₀) × (x - x₀) + fᵧ (x₀, y₀) × (y - y₀) .
=> z - (-58) = -31×(x - 4) - 4 (y - (-1))
=> z +58 +31 x -124 + 4y + 4 = 0.
=> z + 31 x + 4y = 62.