Answer: The discriminant is 76.
Explanation:
To find the discriminant of a quadratic equation, we first need to express the equation in the standard form:
![\[ ax^2 + bx + c = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/college/kwv0awaspsbdejiunjmyhd9fgxxcbw07rs.png)
Given the equation:
![\[ 3x^2 - 10x = -2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/a58gpylrox2i1u33endqgf9o8vks6bz1ts.png)
Rearrange it to get:
![\[ 3x^2 - 10x + 2 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/college/v5qd5m61sbnn8b2cbjq8rrj8diqrf7rw4k.png)
From the equation, we can identify:
a = 3
b = -10
c = 2
The discriminant,
, of a quadratic equation
is given by:
![\[ \Delta = b^2 - 4ac \]](https://img.qammunity.org/2024/formulas/mathematics/college/yt4hy57qyaa50wyopyzfbbj0s52i4qb06m.png)
Plugging in the values we have:
![\[ \Delta = (-10)^2 - 4(3)(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/vy2cgkwk20sw5pkqavhghmyxa6qqzrk1x2.png)
The discriminant
of the equation
is:
![\[ \Delta = 76 \]](https://img.qammunity.org/2024/formulas/mathematics/college/sdxfwbon663zzz7i9q170opzklq3o9kjzo.png)
So, the discriminant is 76.