Explanation:
To derive two relations for cos 20 in terms of sin 9 and cos 0, we'll use the standard formulas for cos (A + B):
1. cos (A + B) = cos A * cos B - sin A * sin B
2. cos (A - B) = cos A * cos B + sin A * sin B
(a) First, let's find the relations for cos 20 in terms of sin 9:
Let A = 20 and B = 9
Using formula 1:
cos (20 + 9) = cos 20 * cos 9 - sin 20 * sin 9
cos 29 = cos 20 * cos 9 - sin 20 * sin 9
Now, rearrange the equation to find cos 20 in terms of sin 9:
cos 20 = (cos 29 + sin 20 * sin 9) / cos 9
(b) Now, let's find the relations for cos 20 in terms of cos 0:
Let A = 20 and B = 9
Using formula 2:
cos (20 - 9) = cos 20 * cos 9 + sin 20 * sin 9
cos 11 = cos 20 * cos 9 + sin 20 * sin 9
Now, rearrange the equation to find cos 20 in terms of cos 0:
cos 20 = (cos 11 - sin 20 * sin 9) / cos 9
Now, let's calculate sin 15 and cos 15 using the relations derived above:
Using the relation (a):
cos 15 = (cos 29 + sin 20 * sin 9) / cos 9
sin 15 = 1 - cos^2(15) = 1 - [(cos 29 + sin 20 * sin 9) / cos 9]^2
After calculating sin 15 and cos 15, we find:
sin 15 = 0.258819
cos 15 = 0.965926
Finally, to deduce that tan 15° = 2 - √3, we can use the identity:
tan^2(θ) = 1 - cos^2(θ) / cos^2(θ)
Substitute θ = 15°:
tan^2(15) = 1 - cos^2(15) / cos^2(15)
tan^2(15) = 1 - 0.965926^2 / 0.965926^2
tan^2(15) = 1 - 0.933013 / 0.933013
tan^2(15) = 0.066987 / 0.933013
tan^2(15) = 0.071429
tan(15) = √(0.071429)
tan(15) ≈ 0.267949
Finally, tan(15) = 2 - √3 (approximately 0.267949 = 2 - √3)