Answer:
a = 24
d(t) = 25 cos (3πt-0.28)
t = 0.15, 0.57, 0.82
X max = 65 mm
X min = 15 mm
Step-by-step explanation:
d(t) = a cos 3πt + 7 sin 3πt
= R cos (3πt-φ)
where
&

(a)
d(t) max → [R cos (3πt-φ)] max → cos (3πt-φ) = 1
d(t) max = R × 1
25 = R
25 =

625 = a² + 49
a = √576
= 24
(b)







d(t) = 25 cos (3πt-0.28)
(c)
d(t) = 25 cos (3πt-0.28)
10 = 25 cos (3πt-0.28)
cos (3πt-0.28) = 0.4
3πt - 0.28 = ±1.16 + 2πk
(i) 3πt = 1.44 + 2πk

= 0.15 +

= 0.15, 0.82
(ii) 3πt = -0.88 + 2πk

= -0.09 +

= 0.57
∴ t = 0.15, 0.57, 0.82
(d)
X max → R = 25
X max = FO + 25
= 40 + 25
= 65 mm
X min → R = -25
X min = FO - 25
= 40 - 25
= 15 mm