33.1k views
5 votes
If tan A-tan B = x and cot B - cot A = y, then cot (A - B) is equal to

User Enoc
by
8.4k points

1 Answer

3 votes

Answer:


\cot(A -B)=(1)/(x)+(1)/(y)

Explanation:

Given trigonometric equations:


\begin{cases}\tan A - \tan B = x\\\cot B - \cot A = y\end{cases}


\textsf{Using the identity\;\;$\cot \theta=(1)/(\tan \theta),$\;\;rewrite the second equation in terms of $\tan$:}


\begin{aligned}y&=\cot B - \cot A\\\\y&=(1)/(\tan B) - (1)/(\tan A)\\\\y&=(\tan A)/(\tan A\tan B) - (\tan B)/(\tan A\tan B)\\\\y&=(\tan A-\tan B)/(\tan A\tan B)\\\\(1)/(y)&=(\tan A\tan B)/(\tan A-\tan B)\end{aligned}

To find the value of cot(A - B), we can use the Tangent of Difference of Angles identity:


\boxed{\begin{array}{l}\underline{\rm Tangent\;of\;Difference\; of \;Angles}\\\\\tan (A -B)=(\tan A -\tan B)/(1 +\tan A \tan B)\\\\\end{array}}


\textsf{As\;\;$\cot \theta=(1)/(\tan \theta)$,\;\;then $\cot(A-B)$ is:}


\cot(A -B)=(1 +\tan A \tan B)/(\tan A -\tan B)


\textsf{Apply the fraction rule} \quad (a+b)/(c)=(a)/(c)+(b)/(c):


\cot(A -B)=(1)/(\tan A -\tan B)+(\tan A \tan B)/(\tan A -\tan B)

Substitute the given equation for x and the rewritten equation for 1/y:


\cot(A -B)=(1)/(x)+(1)/(y)

Therefore, cot(A - B) is equal to:


\large\boxed{(1)/(x)+(1)/(y)}

User Jitendra Jadav
by
7.5k points

No related questions found