231k views
2 votes
Prove that:(1 + sin a - cos a) ^ 2 + (1 - sin a + cos a) ^ 2 = 4(1 - sin a*cos a)​

2 Answers

3 votes

To prove :

  • (1 + sin a - cos a) ^ 2 + (1 - sin a + cos a) ^ 2 = 4(1 - sin a*cos a)

Proof :

By Simplifying both sides,

We get,

  • 2(1-cos a)(1+sin a)+2(1-sin a)(1+cos a) = 2(1-cos a)(1+sin a)+2(1-sin a)(1+cos a)
  • LHS = RHS

hence proved ✓

[ please check the attached snaps for the entire solution to the same ]

Prove that:(1 + sin a - cos a) ^ 2 + (1 - sin a + cos a) ^ 2 = 4(1 - sin a*cos a)​-example-1
Prove that:(1 + sin a - cos a) ^ 2 + (1 - sin a + cos a) ^ 2 = 4(1 - sin a*cos a)​-example-2
User Perkss
by
8.4k points
3 votes

Answer:

See the below explanation for proof.

Explanation:

Given trigonometric equation:


(1 + \sin \alpha - \cos \alpha)^2 + (1 - \sin \alpha + \cos \alpha)^2=4(1 - \sin \alpha \cos \alpha)

To prove the equation, manipulate the left side of the equation until it equals the right side.

Expand the first set of parentheses on the LHS of the equation by using the identity:


\boxed{(a+b-c)^2=a^2+2ab-2ac+b^2-2bc+c^2}

Therefore:


\begin{aligned}(1 + \sin \alpha - \cos \alpha)^2 &=1+2\sin \alpha-2\cos \alpha+ \sin^2 \alpha-2\sin \alpha\cos \alpha+\cos^2 \alpha\end{aligned}

Simplify by using the trigonometric identity sin²x + cos²x = 1:


\begin{aligned}(1 + \sin \alpha - \cos \alpha)^2 &=1+2\sin \alpha-2\cos \alpha+ \sin^2 \alpha-2\sin \alpha\cos \alpha+\cos^2 \alpha\\\\&=2+2\sin \alpha-2\cos \alpha-2\sin \alpha\cos \alpha\end{aligned}

Expand the second set of parentheses on the LHS of the equation by using the identity:


\boxed{(a-b+c)^2=a^2-2ab+2ac+b^2-2bc+c^2}

Therefore:


\begin{aligned}(1 - \sin \alpha + \cos \alpha)^2 &=1-2\sin \alpha+2\cos \alpha+ \sin^2 \alpha-2\sin \alpha\cos \alpha+\cos^2 \alpha\end{aligned}

Simplify by using the trigonometric identity sin²x + cos²x = 1:


\begin{aligned}(1 - \sin \alpha + \cos \alpha)^2 &=1-2\sin \alpha+2\cos \alpha+ \sin^2 \alpha-2\sin \alpha\cos \alpha+\cos^2 \alpha\\\\&=2-2\sin \alpha+2\cos \alpha-2\sin \alpha\cos \alpha\end{aligned}

Therefore:


(1 + \sin \alpha - \cos \alpha)^2 +(1 - \sin \alpha + \cos \alpha)^2


= 2+2\sin \alpha-2\cos \alpha-2\sin \alpha\cos \alpha+2-2\sin \alpha+2\cos \alpha-2\sin \alpha\cos \alpha

Simplify by combining like terms:


= 2+2+2\sin \alpha-2\sin \alpha+2\cos \alpha-2\cos \alpha-2\sin \alpha\cos \alpha-2\sin \alpha\cos \alpha


= 4-4\sin \alpha\cos \alpha

Factor out the common term 4:


= 4(1-\sin \alpha\cos \alpha)

Therefore, we have proved that the left side of the equation equals the right side:


(1 + \sin \alpha - \cos \alpha)^2 + (1 - \sin \alpha + \cos \alpha)^2=4(1 - \sin \alpha \cos \alpha)

User LiamV
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories