104k views
1 vote
A p-n junction is of area 1x10 cm? formed by doping at levels at Na = 1015 cm and Np = 101 cm and ni= 1.5 x1010cm. Calculate build in voltage of this p-n junction, zero bias space charge width and current at 0.5 volt forward bias conditions using parameters: Dielectric constant of the material = 11.8 F/cm, Mn =1500 cm?/V-sec, Hp =450 cm/V-sec, Tn = Tp = 2.5 x10- sce. (Note permittivity of free space is 8.85 x 10-14, = =

1 Answer

5 votes

The build-in voltage of the p-n junction can be calculated using the formula:

Vbi = (k * T * ln(Na * Np / ni^2)) / q

where:

k = Boltzmann constant = 8.617 x 10^-5 eV/K

T = Temperature in Kelvin = 2.5 x 10^2 K

Na = Acceptor concentration = 10^15 cm^-3

Np = Donor concentration = 10^1 cm^-3

ni = Intrinsic carrier concentration = 1.5 x 10^10 cm^-3

q = Charge of an electron = 1.6 x 10^-19 C (Coulombs)

Vbi = (8.617 x 10^-5 eV/K * 2.5 x 10^2 K * ln(10^15 * 10^1 / (1.5 x 10^10)^2)) / (1.6 x 10^-19 C)

Vbi = (2.15425 eV * ln(10^16 / 2.25 x 10^20)) / (1.6 x 10^-19 C)

Vbi = (2.15425 eV * ln(4.44444 x 10^-5)) / (1.6 x 10^-19 C)

Vbi = (2.15425 eV * (-10.014)) / (1.6 x 10^-19 C)

Vbi = -0.1352 V

The build-in voltage of the p-n junction is approximately -0.1352 volts.

The zero-bias space charge width (W) of the depletion region can be calculated using the formula:

W = sqrt((2 * ε * (Vbi - V) / q) * (Na + Np) / (Na * Np))

where:

ε = Permittivity of the material = 11.8 F/cm = 11.8 x 10^-14 F/cm

V = Applied bias voltage = 0 volts

W = sqrt((2 * 11.8 x 10^-14 F/cm * (0.1352 V - 0 V) / (1.6 x 10^-19 C)) * (10^15 cm^-3 + 10^1 cm^-3) / (10^15 cm^-3 * 10^1 cm^-3))

W = sqrt((2 * 11.8 x 10^-14 F/cm * 0.1352 V / (1.6 x 10^-19 C)) * (10^16 cm^-3) / (10^16 cm^-6))

W = sqrt((2 * 11.8 x 10^-14 F/cm * 0.1352 V / (1.6 x 10^-19 C)) * (10^16 cm^-3) / (1 cm^-6))

W = sqrt((2 * 11.8 x 10^-14 F/cm * 0.1352 V / (1.6 x 10^-19 C)) * (10^22))

W = sqrt((3.19152 x 10^-15 F/cm) * (10^22))

W = sqrt(3.19152 x 10^7)

W = 5650.89 nm

The zero-bias space charge width (W) of the depletion region is approximately 5650.89 nanometers.

The forward bias current (I) at 0.5 volts can be calculated using the formula:

I = q * ni^2 * (exp(V / (k * T)) - 1) / (Na * Hp + Np * Mn)

I = 1.6 x 10^-19 C * (1.5 x 10^10 cm^-3)^2 * (exp(0.5 V / (8.617 x 10^-5 eV/K * 2.5 x 10^2 K)) - 1) / (10^15 cm^-3 * 450 cm/V-sec + 10^1 cm^-3 * 1500 cm/V-sec)

I = 1.6 x 10^-19 C * (1.5 x 10^10 cm^-3)^2 * (exp(0.5 V / 215.425) - 1) / (10^15 cm^-3 * 450 cm/V-sec + 10^1 cm^-3 * 1500 cm/V-sec)

I = 1.6 x 10^-19 C * (1.5 x 10^10 cm^-3)^2 * (exp(0.00232) - 1) / (450 x 10^15 cm^-2/V + 15 x 10^15 cm^-2/V)

I = 1.6 x 10^-19 C * (1.5 x 10^10 cm^-3)^2 * (1.00232 - 1) / (465 x 10^15 cm^-2/V)

I = 1.6 x 10^-19 C * (1.5 x 10^10 cm^-3)^2 * 0.00232 / (465 x 10^15 cm^-2/V)

I = 1.6 x 10^-19 C * 3.375 x 10^20 cm^-6 * 0.00232 / (465 x 10^15 cm^-2/V)

I = 1.6 x 10^-19 C * 7.83 x 10^17 / (465 x 10^15 cm^-2/V)

I = 1.2613 x 10^-1 C/V * 10^3 C/V

I = 0.1261 A

The forward bias current (I) at 0.5 volts is approximately 0.1261 Amperes.

User Bsarrazin
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.