158k views
0 votes
Help me get this question correct

Help me get this question correct-example-1

1 Answer

3 votes

Basic theorems in geometry:


\mathrm{1.\ Sum\ of\ interior\ angles\ of\ a\ triangle\ is\ 180^o.}\\\mathrm{2.\ Sum\ of\ all\ exterior\ angles\ of\ a\ triangle\ is\ 360^o.}\\\mathrm{3.\ An\ exterior\ angle\ of\ a\ triangle\ is\ equal\ to\ the\ sum\ of\ the\ opposite\ interior}\\\mathrm{\ \ \ angles.}\\\mathrm{4.\ Corresponding\ angles\ are\ equal.}\\\mathrm{5.\ Alternate\ angles\ are\ equal.}\\\mathrm{6.\ Vertically\ opposite\ angles\ are\ equal.}\\\mathrm{7.\ Cointerior\ angles\ are\ supplementary.}


\mathrm{8.\ Sum\ of\ angles\ in\ straight\ line\ is\ 180^o.}

Answer:


\bold{Method\ 1:}


\angle2= \angle6=60^o\ \ \ \ [\mathrm{Corresponding\ angles\ are\ equal.}]\\\mathrm{\angle1+\angle2=180^o}\ \ \ \ [\mathrm{Sum\ of\ angles\ in\ straight\ line\ is\ 180^o.}]\\\mathrm{or,\ \angle1+60^o=180^o}\\\mathrm{or,\ \angle1=120^o}


\bold{Method\ 2:}\\(i)\ \ \mathrm{\angle6+\angle3=180^o\ \ \ [\mathrm{Sum\ of\ co-interior\ angles\ is\ 180^o.}]}\\\mathrm{or,\ \ 60^o+\angle3=180^o}\\\mathrm{or,\ \ \angle3=120^o}\\(ii)\ \ \mathrm{\angle3=\angle1=120^o\ \ \ \ [\mathrm{Vertically\ opposite\ angles\ are\ equal.}]}


\bold{Method\ 3:}\\(i)\ \ \mathrm{\angle6=\angle4=60^o\ \ \ [Alternate\ angles\ are\ equal.]}\\(ii)\ \ \mathrm{\angle1+\angle4=180^o\ \ \ [\mathrm{Sum\ of\ angles\ in\ straight\ line\ is\ 180^o.}]}\\\mathrm{or,\ \ \angle1+60^o=180^o}\\\mathrm{or,\ \ \angle1=120^o}

User Mike Valstar
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories