191k views
4 votes
Suppose an investment costs $100 the first year and $50 the second year, but earns $150 in the third year and $25 in the fourth year. Instructions: Enter your answer rounded to the nearest whole number. a. What is the internal rate of return (IRR) for the investment? percent. Suppose the firm can borrow funds at an interest rate of 11 percent. b. In this case, you can expect the present value of benefits

O is less than the present value of costs, and the investment should be undertaken. O exceeds the present value of costs, and the investment should not be undertaken
O is less than the present value of costs, and the investment should not be undertaken. O exceeds the present value of costs, and the investment should be undertaken.

2 Answers

3 votes

Final answer:

Calculating the IRR involves finding a discount rate that brings the net present value of cash flows to zero, which generally requires complex calculations. The decision to undertake an investment when borrowing at an 11 percent interest rate depends on whether the present value of benefits exceeds the present value of costs. The choice of a discount rate considers the opportunity cost of capital and a risk premium, as illustrated in the 15% example rate.

Step-by-step explanation:

To calculate the internal rate of return (IRR) of an investment, one would consider the project's cash flows, which are -$100 in year one, -$50 in year two, $150 in year three, and $25 in year four. To find the IRR, we need to find the discount rate that would make the net present value of these cash flows equal to zero. This calculation usually requires the use of financial software or an IRR financial calculator, as it involves solving a complex polynomial equation.

Regarding the present value of benefits, when borrowing at an interest rate of 11 percent, if the present value of returns (benefits) is greater than the present value of costs, the investment should be undertaken because it implies a net gain. Conversely, if the present value of returns is less than the present value of costs, the investment should not be undertaken as it would result in a net loss. This situation represents a scenario where the cost of financial capital is considered, along with the additional returns that go beyond just covering the initial investment.

A financial investor would consider various interest rates to value future payments, reflecting the rate of return on other financial opportunities and a risk premium. For example, if an investor uses a 15% discount rate to assess the present value of future payments, this rate would include both the opportunity cost of capital and a premium for associated risks.

User Suppen
by
8.4k points
4 votes

Final answer:

The question seeks to understand the calculations for the Internal Rate of Return (IRR) of an investment and compares the present value of benefits to the present value of costs. Exact IRR cannot be provided without sufficient data. Decisions on investment are based on whether the present benefits exceed the costs at the interest rate the firm can borrow at, which in this scenario is 11 percent.

Step-by-step explanation:

The question revolves around the concept of Internal Rate of Return (IRR) and present value calculations in financial management. For part 'a', one would have to use financial calculations or an IRR financial calculator to find the rate that makes the net present value of cash flows equal to zero. However here, we are not provided with enough data to calculate the exact IRR, and thus we cannot provide a number for the IRR for this investment.

Part 'b' tackles the decision-making process based on the concept of present value. If the firm can borrow funds at a rate of 11 percent, the decision would be based on whether the present value of the benefits of the investment at the given rate exceeds the present value of costs. In line with the provided example, where an effective rate of return considered by the firm is 4% based on a 9% interest rate and an additional return to society, one could infer that the investment decision would depend on a similar comparison of present values at the 11% rate.

User R K Sharma
by
8.0k points

No related questions found