3.3k views
1 vote
What is the explicit formula for the geometric sequence 224,112.56,28

User Pavlus
by
9.1k points

1 Answer

3 votes


224~~,~~\stackrel{224\cdot (1)/(2)}{112}~~,~~\stackrel{112\cdot (1)/(2)}{56}~~,~~\stackrel{56\cdot (1)/(2)}{28}~~,~~...\hspace{5em}\stackrel{\textit{common ratio}}{r=\cfrac{1}{2}} \\\\[-0.35em] ~\dotfill


n^(th)\textit{ term of a geometric sequence} \\\\ a_n=a_1\cdot r^(n-1)\qquad \begin{cases} a_n=n^(th)\ term\\ n=\textit{term position}\\ a_1=\textit{first term}\\ r=\textit{common ratio}\\[-0.5em] \hrulefill\\ a_1=224\\ r=(1)/(2) \end{cases}\qquad \implies\qquad a_n=224\left( (1)/(2) \right)^(n-1)

User Thomas Stets
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories