150k views
3 votes
(Simplify): (m + b)/(m - b) + (m - b)/(m + b) - (m ^ 2 + b ^ 2)/(m ^ 2 - b ^ 2)​

User Zhujik
by
7.9k points

2 Answers

5 votes
Answer: To simplify the expression (m + b)/(m - b) + (m - b)/(m + b) - (m ^ 2 + b ^ 2)/(m ^ 2 - b ^ 2), we can first find a common denominator for the first two fractions, which is (m - b)(m + b), and then add them together. This gives us ((m + b) ^ 2 + (m - b) ^ 2) / (m ^ 2 - b ^ 2). We can then subtract the third fraction by finding a common denominator of (m - b)(m + b), which gives us (m ^ 2 + b ^ 2 - (m ^ 2 + b ^ 2)) / (m ^ 2 - b ^ 2). This simplifies to 0, so the final answer is just ((m + b) ^ 2 + (m - b) ^ 2) / (m ^ 2 - b ^ 2).
User Jerry Coffin
by
8.0k points
2 votes

Answer:


\textsf{Simplified form is} \sf (m^2+b^2)/((m+b)(m-b)) \:\: or \:\: \sf (m^2+b^2)/((m+b)^2)

Explanation:


\sf ((m + b))/((m - b) )+( (m - b))/((m + b) )-( (m ^ 2 + b ^ 2))/((m ^ 2 - b ^ 2))

Let's simply it.

We can factorize.


\sf m^2-b^2 = (m+a)(m-a)

Above expression can be written as:


\sf ((m + b))/((m - b) )+( (m - b))/((m + b) )-( (m ^ 2 + b ^ 2))/((m+b)(m-b))

Taking LCM (m+a)(m-a) from each:

we get


\sf ((m+b)(m+b) +(m-b)(m-b) -(m^2+b^2))/((m+b)(m-b))

Expand all


\sf (m^2 +2mb+b^2 +m^2-2mb+b^2 -m^2-b^2)/((m+b)(m-b))

Solving like terms


\sf (m^2+b^2)/((m+b)(m-b))

Therefore,


\textsf{Simplified form is} \sf (m^2+b^2)/((m+b)(m-b)) \:\: or \:\: \sf (m^2+b^2)/((m+b)^2)


\boxed{\blue{\textsf{Happy To Help You!!!}}}

User Samantha Blasbalg
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories