158k views
5 votes
Solve the system of equations.
y=2x+2
y=3x^2+6x+1
Round to the nearest hundredth.

User ISrini
by
7.3k points

1 Answer

4 votes

Answer:


\sf x \approx 0.22 \:\:and\:\: y \approx 2.44


\sf x \approx -1.55 \:\: and\:\: \approx -1.10

Explanation:

Given system of equations:

1. y = 2x + 2

2. y = 3x^2 + 6x + 1

To find the solutions, set the expressions for y equal to each other:


\sf 2x + 2 = 3x^2 + 6x + 1

Rearrange to set it to zero:


\sf 3x^2 + 6x - 2x + 1 - 2 = 0

Simplify:


\sf 3x^2 + 4x - 1 = 0

Now, use the quadratic formula:


\sf x =\frac{ -b \pm √(b^2 - 4ac)} {2a}

where a = 3, b = 4, and c = -1.


\sf x=(-(4) \pm √((4)^2 - 4 * 3 * (-1)))/( 2 * 3)


\sf x = (-4 \pm √(28))/( 6)

Now, calculate the two possible values of x:


\sf x = (-4 + √(28))/( 6) \approx0.22


\sf x = (-4 - √(28))/( 6) \approx -1.55

Now, find the corresponding values of y using the first equation:


\sf For\: x \approx 0.22 :


\sf y = 2(0.22) + 2 \approx 2.44


\sf For \;\: x \approx -1.55:


\sf y = 2(-1.55) + 2 \approx -1.10

Thus, the solutions to the system of equations (rounded to the nearest hundredth) are:


\sf x \approx 0.22 \:\:and\:\: y \approx 2.44


\sf x \approx -1.55 \:\: and\:\: \approx -1.10

User MikePR
by
8.4k points

No related questions found