266,402 views
1 vote
1 vote
Tiles

4V3
332
233
375
Pairs
324
1
V48
1 1 1
354
745

Tiles 4V3 332 233 375 Pairs 324 1 V48 1 1 1 354 745-example-1
User Binarycleric
by
2.7k points

1 Answer

27 votes
27 votes

Given:

The expressions are:


\sqrt[3]{24},√(48),\sqrt[3]{54},√(45)

To find:

The simplified form of each expression.

Solution:

We have,


\sqrt[3]{24}

It can be written as:


\sqrt[3]{24}=\sqrt[3]{2* 2* 2* 3}


\sqrt[3]{24}=2\sqrt[3]{3}

Similarly,


√(48)=√(2* 2* 2* 2* 3)


√(48)=(2* 2)√(3)


√(48)=4√(3)

And,


\sqrt[3]{54}=\sqrt[3]{2* 3* 3* 3}


\sqrt[3]{54}=3\sqrt[3]{2}

In the same way,


√(45)=√(3* 3* 5)


√(45)=3√(5)

Therefore, the required pairs are:


\sqrt[3]{24}\to 2\sqrt[3]{3}


√(48)\to 4√(3)


\sqrt[3]{54}\to 3\sqrt[3]{2}


√(45)\to 3√(5)

User Naaff
by
2.7k points