Answer:
y = -2
Explanation:
You want to solve this system of equations using matrices:
![\left[\begin{array}{cc}2&7\\2&6\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}4\\6\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rmxie390w2vjpfuenlzda5wq1op0eh2evz.png)
Row operations
This system of equations lends itself to solution using a couple of row operations on the matrices involved.
r2 ⇒ r1 -r2
![\left[\begin{array}{cc}2&7\\0&1\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}4\\-2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4io5gnkyi6oywgpxlp8fipr36sy0ukzad9.png)
At this point, we know the value of y is -2.
The rest of the solution is obtained by ...
r1 ⇒ r1 -7·r2
![\left[\begin{array}{cc}2&0\\0&1\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}18\\-2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ydud9pkeg76czcmzd4wb8xxw0jf1hhzr53.png)
r1 ⇒ r1/2
![\left[\begin{array}{cc}1&0\\0&1\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}9\\-2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3e8o008y4nkx6d6xe14jtgtfqgmdawi2o7.png)
(x, y) = (9, -2)
Inverse matrix
The inverse of the coefficient matrix is the transpose of the cofactor matrix, divided by the determinant. The determinant is 2·6 -2·7 = -2. Then the inverse matrix is ...
![-(1)/(2)\left[\begin{array}{cc}6&-7\\-2&2\end{array}\right] =\left[\begin{array}{cc}-3&(7)/(2)\\1&-1\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zihw77nuaoesfa8qbj0f167nclt64o2li0.png)
Multiplying the original equation by this gives ...
![\left[\begin{array}{cc}-3&7/2\\1&-1\end{array}\right] \left[\begin{array}{cc}2&7\\2&6\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{cc}-3&7/2\\1&-1\end{array}\right]\left[\begin{array}{c}4\\6\end{array}\right]\\\\\\\left[\begin{array}{cc}1&0\\0&1\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right] =\left[\begin{array}{c}-3\cdot4+(7)/(2)\cdot6\\1\cdot4-1\cdot6\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/poju6cpeoun4fu6tb4eyg9blaq9zezsa38.png)
So, finally, ...
![\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}9\\-2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/k2bk6ojuqx251nptf8su3ogkvh168ac8jv.png)
The value of y is -2.