106k views
4 votes
Find the product of (8x -9) and (2x +3) .​

User Jgawrych
by
7.4k points

2 Answers

4 votes

Answer:

product of (8x - 9)(2x + 3) = 16x^2 + 6x -27

Explanation:

(8x - 9)(2x + 3)

FOIL method

first: 8x(2x)

= 16x^2

outside: 8x(3)

= 24x

inside: -9(2x)

= -18x

last: -9(3)

= -27

16x^2 + 24x - 18x - 27

combine like terms

16x^2 + 6x - 27

User Sven Hager
by
8.1k points
3 votes


\huge\text{Hey there!}\\\\\\\\\large\textbf{Original problem}\\\mathtt{(8x - 9)*(2x + 3)}\\\large\textbf{TRANSLATE:}}\\\mathtt{= (8x - 9)(2x + 3)}\\\large\textbf{DISTRIBUTE:}\\\mathtt{= 8x(2x) + 8x(3) - 9(2x) - 9(3)}}\\\mathtt{16x^2 +24x - 18x- 27}\\\large\textbf{COMBINE the LIKE TERMS (ONLY if YOU HAVE ANY:}\\\mathsf{= (16x^2) + (24x - 18x) - (27)}\\\mathtt{= 16x^2 + 6x - 27}\\\large\textbf{FINALLY, the OVERALL ANSWER IS:}\\\huge\boxed{\mathtt{16x^2 + 6x - 27}}

\\\large\textbf{ORIGINAL EQUATION:\mathtt{(8x - 9)*(2x + 3)}\\\large\textbf{TRANSLATE:}}\\\mathtt{= (8x - 9)(2x + 3)}\\\large\textbf{DISTRIBUTE:}\\\mathtt{= 8x(2x) + 8x(3) - 9(2x) - 9(3)}}\\\mathtt{16x^2 +24x - 18x- 27}\\\large\textbf{COMBINE the LIKE TERMS (ONLY if YOU HAVE ANY):}\\\mathsf{= (16x^2) + (24x - 18x) - (27)}\\\mathtt{= 16x^2 + 6x - 27}\\\large\textbf{FINALLY, the OVERALL ANSWER IS:}\\\huge\boxed{\mathtt{16x^2 + 6x - 27}}\huge\checkmark



\huge\text{Good luck on your assignment \& enjoy your day!}


~
\frak{Amphitrite1040:)}

User Sakshi Gatyan
by
7.6k points

No related questions found