112k views
3 votes
What is the solution to –2(8x – 4) < 2x + 5?

x > x is greater than StartFraction 1 Over 6 EndFraction.
x < x is less than StartFraction 1 Over 6 EndFraction.
x > 6
x < 6

User Soulmerge
by
8.7k points

2 Answers

4 votes

Given that

  • -2(8x - 4) < 2x + 5

✦ We need to find

  • the value of x


\longleftrightarrow\rm{-2(8x-4) < 2x+5}


\longleftrightarrow\rm{-16x+8 < 2x+5}


\longleftrightarrow\rm{-16x-2x+8 < 5}


\longleftrightarrow\rm{-18x < 5-8}


\longleftrightarrow\rm{-18x < -3}


\longleftrightarrow\rm{18x > 3}


\longleftrightarrow\rm{x > (3)/(18)}


\longleftrightarrow\rm{x > (1)/(6)}

Therefore x > 1/6

User Alysa
by
8.9k points
5 votes
The solution to –2(8x – 4) < 2x + 5 is:

-128x + 64 < 2x + 5
-130x < -59
x > 59/(-130)
x > -0.454

Therefore, the answer is x > x is greater than StartFraction 1 Over 6 EndFraction.
User EMMERICH
by
9.0k points

No related questions found