198k views
1 vote
A rectangular toroid has 5000 turns and a self-inductance of 0. 50 h. If the height is 0. 20 m what is the ratio of the outer radius to the inner radius?

User Scholtz
by
7.7k points

1 Answer

3 votes

Final answer:

The ratio of the outer radius to the inner radius of the rectangular toroid can be found using the formula R₂/R₁ = √(L₂/L₁), where L₂ is the new self-inductance, L₁ is the initial self-inductance, N is the number of turns, and R₁ and R₂ are the inner and outer radii respectively. Substituting the given values into the formula, we can calculate the ratio.

Step-by-step explanation:

To find the ratio of the outer radius to the inner radius of a rectangular toroid, we can use the formula:

R₂/R₁ = √(L₂/L₁)

Given that the self-inductance L₁ is 0.50 H and the number of turns N is 5000, we can calculate L₂ using the formula:

L₂ = N² * L₁

Substituting the values, we get L₂ = 2.5 * 10⁷ H. Now we can plug the values of L₂, L₁, and N into the first formula to find the ratio R₂/R₁.

User Pm Dubey
by
8.5k points