22.3k views
1 vote
Simplify
(3 − √(5)) × √(3 + √(5)) + (3 + √(5)) × √(3 − √(5))

1 Answer

6 votes

Answer: To simplify the given expression, we can start by noticing that we have a difference of squares in each part of the expression. Recall the difference of squares formula:

a^2 - b^2 = (a + b)(a - b)

Now, let's simplify step by step:

In the first part of the expression, we have (3 − √(5)) × √(3 + √(5)). This part can be rewritten as a difference of squares:

(3 − √(5)) × √(3 + √(5)) = (3 - √5) × √(3 + √5) × (√(3 + √5) + √(3 - √5)) / (√(3 + √5) + √(3 - √5))

The denominator (√(3 + √5) + √(3 - √5)) is a conjugate of the numerator (√(3 + √5) - √(3 - √5)), and when multiplied, it results in a difference of squares:

(3 - √5) × √(3 + √5) × (√(3 + √5) + √(3 - √5)) / (√(3 + √5) + √(3 - √5)) = (3 + √5) × (3 + √5) = (3 + √5)^2

In the second part of the expression, we have (3 + √(5)) × √(3 − √(5)). Similarly, this can be rewritten as a difference of squares:

(3 + √(5)) × √(3 − √(5)) = (3 + √5) × √(3 − √5) × (√(3 + √5) - √(3 - √5)) / (√(3 + √5) - √(3 - √5))

The denominator (√(3 + √5) - √(3 - √5)) is a conjugate of the numerator (√(3 + √5) + √(3 - √5)), and when multiplied, it results in a difference of squares:

(3 + √5) × √(3 − √5) × (√(3 + √5) - √(3 - √5)) / (√(3 + √5) - √(3 - √5)) = (3 - √5) × (3 - √5) = (3 - √5)^2

Now, let's put both parts together:

(3 − √(5)) × √(3 + √(5)) + (3 + √(5)) × √(3 − √(5)) = (3 + √5)^2 + (3 - √5)^2

Simplify each square:

(3 + √5)^2 = 3^2 + 2 * 3 * √5 + (√5)^2 = 9 + 6√5 + 5 = 14 + 6√5

(3 - √5)^2 = 3^2 - 2 * 3 * √5 + (√5)^2 = 9 - 6√5 + 5 = 14 - 6√5

Add the simplified squares together:

(3 + √5)^2 + (3 - √5)^2 = (14 + 6√5) + (14 - 6√5) = 28

So, the simplified expression is 28.

User Sled
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories