22.3k views
1 vote
Simplify
(3 − √(5)) × √(3 + √(5)) + (3 + √(5)) × √(3 − √(5))

1 Answer

6 votes

Answer: To simplify the given expression, we can start by noticing that we have a difference of squares in each part of the expression. Recall the difference of squares formula:

a^2 - b^2 = (a + b)(a - b)

Now, let's simplify step by step:

In the first part of the expression, we have (3 − √(5)) × √(3 + √(5)). This part can be rewritten as a difference of squares:

(3 − √(5)) × √(3 + √(5)) = (3 - √5) × √(3 + √5) × (√(3 + √5) + √(3 - √5)) / (√(3 + √5) + √(3 - √5))

The denominator (√(3 + √5) + √(3 - √5)) is a conjugate of the numerator (√(3 + √5) - √(3 - √5)), and when multiplied, it results in a difference of squares:

(3 - √5) × √(3 + √5) × (√(3 + √5) + √(3 - √5)) / (√(3 + √5) + √(3 - √5)) = (3 + √5) × (3 + √5) = (3 + √5)^2

In the second part of the expression, we have (3 + √(5)) × √(3 − √(5)). Similarly, this can be rewritten as a difference of squares:

(3 + √(5)) × √(3 − √(5)) = (3 + √5) × √(3 − √5) × (√(3 + √5) - √(3 - √5)) / (√(3 + √5) - √(3 - √5))

The denominator (√(3 + √5) - √(3 - √5)) is a conjugate of the numerator (√(3 + √5) + √(3 - √5)), and when multiplied, it results in a difference of squares:

(3 + √5) × √(3 − √5) × (√(3 + √5) - √(3 - √5)) / (√(3 + √5) - √(3 - √5)) = (3 - √5) × (3 - √5) = (3 - √5)^2

Now, let's put both parts together:

(3 − √(5)) × √(3 + √(5)) + (3 + √(5)) × √(3 − √(5)) = (3 + √5)^2 + (3 - √5)^2

Simplify each square:

(3 + √5)^2 = 3^2 + 2 * 3 * √5 + (√5)^2 = 9 + 6√5 + 5 = 14 + 6√5

(3 - √5)^2 = 3^2 - 2 * 3 * √5 + (√5)^2 = 9 - 6√5 + 5 = 14 - 6√5

Add the simplified squares together:

(3 + √5)^2 + (3 - √5)^2 = (14 + 6√5) + (14 - 6√5) = 28

So, the simplified expression is 28.

User Sled
by
8.1k points

No related questions found