Answer:
Please mark as brilliant if I am right.. :)
Explanation:
Part A: Adding the Polynomials (combining like terms)
(10b^8 + 3ab^7 + c + 9abc + 4b^2) + (1 + c + 4ab^7 + 9b^2)
Result: 10b^8 + 7ab^7 + 2c + 9abc + 13b^2 + 1
(13xy^7 + 11yz^9 + x + 9 + 8xy^2) + (yz^9 + 13xy^7 + x + 10 + xy^2)
Result: 26xy^7 + 11yz^9 + 2x + 19 + 9xy^2 + yz^9
(5 + n + 4mo^2 + 8n^8) + (19 + 16mo^2 + 4n^10 + 9mno^2) + (45 + n)
Result: 16mo^2 + 4n^10 + 9mno^2 + 53 + 2n + 8n^8
(15yz^3 + 13xy^7 + x + 9 + 4x^2) + (1 + x + 4xy^7 + 8yz^3)
Result: 13xy^7 + 8yz^3 + 5x^2 + 2x + 10
(9ab^7 + bc + 14ab^3 + 9a + 4ab^2) + (1 + a + 16ab^3 + 4ab^7 + bc + 9ab^2)
Result: 5ab^7 + 30ab^3 + 10ab^2 + 10a + 2bc + 1
(12 + r + 6s^4t^2 + 8st^2) + (19 + 16s^2 + 4st^7 + 6s^4t^2 + st^2) + (8s^4t^2 + 15 + r)
Result: 8s^4t^2 + 6st^7 + 16s^2 + 4st^2 + 47 + 2r
(3xy^2 + 6yx^5 + 11yz^9 + y + 87) + (13yx^5 + 13xy^2 + y + 10 + yx^5)
Result: 6yx^5 + 13xy^2 + 13yx^5 + 11yz^9 + 2y + 97
(n^2 + 4 + 403 + n) + (4 + n + 4m^2n^2 + 8n^2) + (18 + 9m^2n^2 + 403 + 9n^2)
Result: 13n^2 + 8m^2n^2 + 415 + 18
(12 + 6s^4t^2 + s) + (10 + s + 6s^4t^2 + 8s^2) + (21 + 6s^4t^2 + 7s^4t^2)
Result: 18s^4t^2 + 7s^4t^2 + 15s^2 + 9s + 43
(13yx^5) + (13xy^2 + 19y + 3z^9) + (x + yz^9 + 8yx^5) + (yz^9 + 43xy^2 + 11y + 6z^9 + xy^2)
Result: 21yx^5 + 14xy^2 + y + 3z^9 + yz^9 + 6z^9 + x
Part B: Simplifying the Polynomials
10b^8 + 7ab^7 + 2c + 9abc + 13b^2 + 1
26xy^7 + 11yz^9 + 2x + 19 + 9xy^2 + yz^9
16mo^2 + 4n^10 + 9mno^2 + 53 + 2n + 8n^8
13xy^7 + 8yz^3 + 5x^2 + 2x + 10
5ab^7 + 30ab^3 + 10ab^2 + 10a + 2bc + 1
8s^4t^2 + 6st^7 + 16s^2 + 4st^2 + 47 + 2r
6yx^5 + 13xy^2 + 13yx^5 + 11yz^9 + 2y + 97
13n^2 + 8m^2n^2 + 415 + 18
18s^4t^2 + 7s^4t^2 + 15s^2 + 9s + 43
21yx^5 + 14xy^2 + y + 3z^9 + yz^9 + 6z^9 + x