138k views
3 votes
Determine the rational function g(x) which is the inverse of the given function:

f(x) = x² - x - 6

User Woytech
by
8.3k points

1 Answer

1 vote

Answer:


g(x)=\sqrt{x+6(1)/(4) } +(1)/(2)

Explanation:

Turn the quadratic function into perfect quadratic function:

f(x) = x² - x - 6

divide the coefficient of x by 2 ⇒ coefficient of -x = -1

⇒ -1 ÷ 2 =
-(1)/(2)


(x - (1)/(2) )^(2) =x^(2) -x+(1)/(4)


x^(2) -x-6=(x^(2) -x+(1)/(4) )-6(1)/(4)


x^(2) -x-6=(x-(1)/(2) )^2-6(1)/(4)


f(x)=(x-(1)/(2) )^2-6(1)/(4)


(x-(1)/(2) )^(2) =f(x)+6(1)/(4)


x-(1)/(2) =\sqrt{f(x)+6(1)/(4) }


x=\sqrt{f(x)+6(1)/(4) }+(1)/(2)

now, change the x into g(x) & f(x) into x


g(x)=\sqrt{x+6(1)/(4) } +(1)/(2)

User VGR
by
7.4k points

No related questions found