11.1k views
5 votes
Show that for any x the matrix A=[cos(2x)sin(2x)​sin(2x)−cos(2x)​] satisfies the relation A2=I

User Nishi
by
7.3k points

1 Answer

2 votes

Explanation:

To show that the matrix A = [cos(2x) sin(2x); sin(2x) -cos(2x)] satisfies the relation A^2 = I, we need to compute the square of the matrix A and demonstrate that it equals the identity matrix I.

Let's compute A^2:

A^2 = A * A

A = [cos(2x) sin(2x); sin(2x) -cos(2x)]

A * A = [cos(2x) sin(2x); sin(2x) -cos(2x)] * [cos(2x) sin(2x); sin(2x) -cos(2x)]

Using matrix multiplication, we have:

A * A = [cos(2x)*cos(2x) + sin(2x)*sin(2x) cos(2x)*sin(2x) + sin(2x)*(-cos(2x));

sin(2x)*cos(2x) + (-cos(2x))*sin(2x) sin(2x)*sin(2x) + (-cos(2x))*(-cos(2x))]

Simplifying further:

A * A = [cos^2(2x) + sin^2(2x) 0;

0 cos^2(2x) + sin^2(2x)]

Using the trigonometric identity cos^2(θ) + sin^2(θ) = 1, we can simplify further:

A * A = [1 0;

0 1] = I

Therefore, we have shown that A^2 = I for any value of x.

User ROZZ
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories