11.1k views
5 votes
Show that for any x the matrix A=[cos(2x)sin(2x)​sin(2x)−cos(2x)​] satisfies the relation A2=I

User Nishi
by
7.3k points

1 Answer

2 votes

Explanation:

To show that the matrix A = [cos(2x) sin(2x); sin(2x) -cos(2x)] satisfies the relation A^2 = I, we need to compute the square of the matrix A and demonstrate that it equals the identity matrix I.

Let's compute A^2:

A^2 = A * A

A = [cos(2x) sin(2x); sin(2x) -cos(2x)]

A * A = [cos(2x) sin(2x); sin(2x) -cos(2x)] * [cos(2x) sin(2x); sin(2x) -cos(2x)]

Using matrix multiplication, we have:

A * A = [cos(2x)*cos(2x) + sin(2x)*sin(2x) cos(2x)*sin(2x) + sin(2x)*(-cos(2x));

sin(2x)*cos(2x) + (-cos(2x))*sin(2x) sin(2x)*sin(2x) + (-cos(2x))*(-cos(2x))]

Simplifying further:

A * A = [cos^2(2x) + sin^2(2x) 0;

0 cos^2(2x) + sin^2(2x)]

Using the trigonometric identity cos^2(θ) + sin^2(θ) = 1, we can simplify further:

A * A = [1 0;

0 1] = I

Therefore, we have shown that A^2 = I for any value of x.

User ROZZ
by
8.1k points