Answer:
j = 4
k = 10
Explanation:
Given expression:
8x³ - 125
- 8 is a perfect cube of 2.
- 125 is a perfect cube of 5
So, we can factorize the expression as:
= (2x)³ - (5)³
Using formula:
- a³ - b³ = (a - b)(a² + ab + b²)
In the above expression, a = 2x, b = 5
So, by substituting a and b in the above formula, we get:
= (2x - 5)[(2x)² + (2x)(5) + (5)²]
Simplify
= (2x - 5)(4x² + 10x + 25)
Comparing it with the given:
= (2x - 5)(jx² + kx + 25)
We get:
j = 4
k = 10
![\rule[225]{225}{2}](https://img.qammunity.org/2024/formulas/mathematics/high-school/yk3l6bxs46equldxx0z8qla0zuvm8l328e.png)