52.3k views
3 votes
Solve 4tanx/1-tan^2x=1 for 0 ≤ x ≤ 2π

User Kefs
by
7.7k points

1 Answer

4 votes

Answer:

x = 0.232, 1.803, 3.373, 4.944

Explanation:

Given trigonometric equation:


(4 \tan x)/(1- \tan^2x)=1

Multiply both sides of the equation by 1 - tan²x:


4\tan x = 1 - \tan^2 x

Add tan²x - 1 to both sides:


\tan^2x+4\tan x-1=0

Solve the quadratic equation by using the quadratic formula.


\boxed{\begin{array}{c}\underline{\sf Quadratic\;Formula}\\\\x=(-b \pm √(b^2-4ac))/(2a)\quad\textsf{when}\;ax^2+bx+c=0\\\\\end{array}}

In this case:

  • a = 1
  • b = 4
  • c = -1

Substitute the values of a, b and c into the quadratic formula and solve for tan(x):


\tan x=(-4\pm √(4^2-4(1)(-1)))/(2(1))


\tan x=(-4\pm √(16+4))/(2)


\tan x=(-4\pm √(20))/(2)


\tan x=(-4\pm √(2^2 \cdot 5))/(2)


\tan x=(-4\pm √(2^2) √(5))/(2)


\tan x=(-4\pm2√(5))/(2)


\tan x&=-2\pm√(5)

So the two solutions for tan(x) are:


\tan x=-2-√(5)


\tan x=-2+√(5)

Solve for x by taking the arctan of both solutions, remembering that the tangent function is periodic with a period of π.


x=\arctan\left(-2-√(5)\right)+\pi n\approx-1.339+\pi n


x=\arctan\left(-2+√(5)\right)+\pi n \approx0.232+\pi n

Therefore, the solutions for x that fall within the given interval 0 ≤ x ≤ 2π are:


x=\arctan\left(-2+√(5)\right) \approx0.232\; \sf (3\;d.p.)


x=\arctan\left(-2-√(5)\right)+\pi \approx 1.803 \; \sf \;(3\;d.p.)


x=\arctan\left(-2+√(5)\right)+\pi \approx 3.373\; \sf (3\;d.p.)


x=\arctan\left(-2-√(5)\right)+2\pi \approx 4.944\; \sf \;(3\;d.p.)

User Justanoob
by
7.9k points

Related questions

asked Oct 16, 2018 140k views
Bosko asked Oct 16, 2018
by Bosko
8.0k points
1 answer
2 votes
140k views
asked Oct 7, 2018 220k views
Ruslan Makrenko asked Oct 7, 2018
by Ruslan Makrenko
8.0k points
1 answer
3 votes
220k views