111k views
4 votes
Find the following for the function f(x) = 4x^2+3x-3

(a) f(0)
(b) f(1)
(c) f(-1)
(d) f(-x)
(e) –f(x)
(f) f(x+1)
(g) f(5x)
(h) f(x+h)

(a) f(0) = ______ (Simplify your answer)
(b) f(1) = ______ (Simplify your answer)

1 Answer

2 votes

Answer:


\tt (a) f(0) = -3\\ \tt (b) f(1) = 4\\\tt (c) f(-1) = -2\\\tt (d) f(-x) = 4x^2 - 3x - 3\\\tt (e) -f(x) = -4x^2 - 3x + 3\\\tt (f) f(x+1) = 4x^2 + 11x + 4\\\tt (g) f(5x) = 100x^2 + 15x - 3\\\tt (h) f(x+h) = 4x^2 + 8xh + 4h^2 + 3x + 3h - 3

Explanation:

Given function is f(x) = 4x^2+3x-3

We can solve the given equation by replacing or substituting the given value in place of x.


\tt (a) f(0) = 4(0)^2 + 3(0) - 3 = -3


\tt (b) f(1) = 4(1)^2 + 3(1) - 3 = 4


\tt (c) f(-1) = 4(-1)^2 + 3(-1) - 3 = -2


\tt (d) f(-x) = 4(-x)^2 + 3(-x) - 3 = 4x^2 - 3x - 3


\tt (e) -f(x) = -(4x^2 + 3x - 3) = - 4x^2 - 3x + 3


\tt (f) f(x+1) = 4(x+1)^2 + 3(x+1) - 3\\ =4(x^2+2x+1) +3x+3 -3 \\=4x^2+8x+4 +3x =4x^2+11x+4


\tt (g) f(5x) = 4(5x)^2 + 3(5x) - 3 = 100x^2 + 15x - 3


\tt (h) f(x+h) = 4(x+h)^2 + 3(x+h) - 3\\ = 4(x^2 + 2xh + h^2) + 3x + 3h - 3 \\= 4x^2 + 8xh + 4h^2 + 3x + 3h - 3

User Ndcweb
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories