5.9k views
2 votes
Use series to approximate the definite integral I to within the indicated accuracy.

Use series to approximate the definite integral I to within the indicated accuracy-example-1
User Murtuza
by
7.6k points

1 Answer

5 votes

Answer:


\displaystyle I=0.0130

Explanation:

We know the following:


\displaystyle e^x=\sum^\infty_(n=0)(x^n)/(n!)\\\\e^(-x^2)=\sum^\infty_(n=0)((-1)^nx^(2n))/(n!)\\\\x^3e^(-x^2)=\sum^\infty_(n=0)((-1)^nx^(2n+3))/(n!)

Now we integrate to get:


\displaystyle \int^(0.5)_0x^3e^(-x^2)dx=\biggr[\sum^\infty_(n=0)((-1)^nx^(2n+4))/(n!(2n+4))\biggr]^(x=0.5)_(x=0)\\\\\\=\biggr[\sum^\infty_(n=0)((-1)^n(0.5)^(2n+4))/(n!(2n+4))\biggr]-\biggr[\sum^\infty_(n=0)((-1)^n(0)^(2n+4))/(n!(2n+4))\biggr]\\\\\\=\sum^\infty_(n=0)(1)/(2^(2n+4)n!(2n+4))

Because the series is alternating, we can apply Alternating Series Estimation.

The term with
n=2 is
(1)/(4096) < 0.001, so we use:


\displaystyle \sum^1_(n=0)(1)/(2^(2n+4)n!(2n+4))=(1)/(64)-(1)/(384)\approx0.0130

Therefore,
\displaystyle \int^(0.5)_0x^3e^(-x^2)dx\approx0.0130 with an error less than 0.001

User Zaynetro
by
8.8k points

No related questions found