Answer:
y = 19; x = 4
Explanation:
Step 1: Isolate x in y = 4x + 3:
Before we can start solving the system, we'll first need to isolate x in the first equation using the following steps:
Subtract 3 from both sides:
(y = 4x + 3) - 3
y - 3 = 4x
Divide both sides by 4 to isolate x:
(y - 3 = 4x) / 4
1/4y - 3/4 = x
Step 2: Substitute 1/4y - 3/4 = x for x in y = 7 + 3x to solve for y:
Now we can substitute 1/4y - 3/4 = x for x in y = 7 + 3x to first solve for y:
y = 7 + 3(1/4y - 3/4)
y = 7 + 3/4y - 9/4
(y = 3/4y + 19/4) - 3/4y
(1/4y = 19/4) / 1/4
y = 19/4 * 4
y = 19
Thus, y = 19
Step 3: Plug in 19 for y in y = 4x + 3 to solve for x:
Now we can solve for x by plugging in 19 for y in y = 4x + 3:
(19 = 4x + 3) - 3
(16 = 4x) / 4
4 = x
Thus, x = 4