Answer:To find cos(st) given that cos(s) = -3/10 and cos(t) = -3, we can use the trigonometric identity for the cosine of a product of two angles:
cos(st) = cos(s) * cos(t) - sin(s) * sin(t)
First, let's determine sin(s) using the Pythagorean identity:
sin(s) = √(1 - cos^2(s))
= √(1 - (-3/10)^2)
= √(1 - 9/100)
= √(91/100)
= √91/10
Next, let's determine sin(t) using the Pythagorean identity:
sin(t) = √(1 - cos^2(t))
= √(1 - (-3)^2)
= √(1 - 9)
= √(-8)
= √8 * i
= 2√2 * i
Now we can substitute these values into the cosine of the product formula:
cos(st) = cos(s) * cos(t) - sin(s) * sin(t)
= (-3/10) * (-3) - (√91/10) * (2√2 * i)
= 9/10 - 2√2/10 * √91 * i
= 9/10 - (2√2√91)/10 * i
= 9/10 - (√182/10) * i
Therefore, cos(st) is approximately 9/10 - (√182/10) * i.