169k views
2 votes
A rectangle is bounded by the x-axis and the semicircle y=
\sqrt{36-x^(2) } (y =square root of 36-xsquare) Write the area of the rectangle as a function of x and determine the domain of the function

1 Answer

2 votes

Answer:


x = + - √((6 + y)(6 - y))

Explanation:


1. \: y = \sqrt{6 {}^(2) - x {}^(2)} \\ 2. \: y = √((6 + x)(6 - x)) \\ 3. \: y {}^(2) = √((6 + x)(6 - x)) \\ 4. \: y {}^(2) = 6 {}^(2) - x {}^(2) \\ 5. \: y {}^(2) = 36 - x {}^(2) \\ 6. \: y {}^(2) - 36 = - x {}^(2) \\ 7. \: - y {}^(2) + 36 = x {}^(2) \\ 8. \: 36 - y {}^(2) = x {}^(2) \\ 9. \: + - \sqrt{36 - y {}^(2)} = x {}^(2) \\ 10. \: + - \sqrt{6 {}^(2) - y {}^(2) } = x {}^(2) \\ 11. \: + - √((6 + y)(6 - y)) = x \\ 12. \: x = + - √((6 + y)(6 - y))

User Talha Bin Shakir
by
7.8k points

Related questions

asked Jan 6, 2024 91.8k views
Coreus asked Jan 6, 2024
by Coreus
8.5k points
1 answer
4 votes
91.8k views
asked Mar 18, 2024 80.0k views
Dinca Adrian asked Mar 18, 2024
by Dinca Adrian
8.1k points
1 answer
1 vote
80.0k views