Answer:
------------------------------
Given equation:
- (x² + 6x + 17)(y² + 4y + 7) = 24
Complete the square in both parenthesis:
- [(x² + 6x + 9) + 8][(y²+ 4y + 4) + 3] = 24
- [(x + 3)² + 8][(y + 2)² + 3] = 24
We know that the square of a rational number is a positive number or zero but never negative. Then:
- (x + 3)² + 8 ≥ 8 and
- (y + 2)² + 3 ≥ 3
The minimum value of the product is 8*3 = 24 if both squares are equal to zero:
- (x + 3)² = 0 ⇒ x + 3 = 0 ⇒ x = - 3
- (y + 2)² = 0 ⇒ y + 2 = 0 ⇒ y = - 2