A. Moment of inertia is
![\[ I = 1.3135 \, \text{kg} \cdot \text{m}^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/v1r45922gzwor2wmiudsd58ic89l85bdij.png)
B .Rotational kinetic energy is approximately 37.335 joules
How to find the moment of inertia and rotational kinetic energy of the dancer?
Moment of Inertia
Given:
Dancer's mass (m) = 55.5 kg
Diameter of the head (d) = 16 cm
Width of the body (w) = 24 cm
Length of the arms (l) = 60 cm
Calculate the radius of gyration for the head (r₁):

Calculate the radius of gyration for the trunk and legs (r₂):
Calculate the radius of gyration for the arms (r₃):
Expression for the moment of inertia for the dancer:
![\[ I = \left((7m)/(100) \cdot r_(1)^2\right) + \left((80m)/(100) \cdot r_(2)^2\right) + \left((13m)/(100) \cdot r_(3)^2\right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/7qp4v202hxhmshky8ce7wfvzozt6mg1fzr.png)
Substitute the given values:
![\[ I = \left(0.07 \cdot 55.5 \, \text{kg} \cdot (8 \, \text{cm})^2\right) + \left(0.80 \cdot 55.5 \, \text{kg} \cdot (12 \, \text{cm})^2\right) + \left(0.13 \cdot 55.5 \, \text{kg} \cdot (30 \, \text{cm})^2\right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/7tb26y6of0knx8n0lfik2yedmk4mm9lc4w.png)
![\[ I = 1.3135 \, \text{kg} \cdot \text{m}^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/v1r45922gzwor2wmiudsd58ic89l85bdij.png)
Rotational Kinetic Energy
Expression for rotational kinetic energy:
![\[ K = (1)/(2) \cdot I \cdot \omega^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/g77fxnx4lmo68zndkipt99iqjgocp4qz6j.png)
Given:
Angular velocity (ω) =

Substitute the values:
![\[ K = (1)/(2) \cdot 1.3135 \, \text{kg} \cdot \text{m}^2 \cdot \left(72 * (2\pi)/(60)\right)^2 \, \text{rad/s} \]](https://img.qammunity.org/2024/formulas/physics/high-school/340iw2rhp0l0prxoxn0cil3qks1xbwa0am.png)
![\[ K \approx 37.335 \, \text{J} \]](https://img.qammunity.org/2024/formulas/physics/high-school/19oz6ogwuid6zy8vo13fw008bs7f5c6dt9.png)
Therefore, the rotational kinetic energy of the dancer is approximately 37.335 joules.
See missing part of the question on the attached image below,