154k views
2 votes
Find the two consecutive positive even integers whose product is 48.

User Dpcasady
by
8.6k points

2 Answers

1 vote

Answer:


6,8

Explanation:

Method 1:


\mathrm{Let\ }2x\ \mathrm{and\ }2x+2\ \mathrm{be\ the\ two\ consecutive\ even\ integers.}\\\mathrm{Then,}\\2x(2x+2)=48\\\mathrm{or,\ }4x^2+4x=48\\\mathrm{or,\ }x^2+x=12\\\mathrm{or,\ }x^2+x-12=0\\\mathrm{or,\ }x^2+4x-3x-12=0\\\mathrm{or,\ }x(x+4)-3(x+4)=0\\\mathrm{or,\ }(x-3)(x+4)=0\\\mathrm{i.e.}\ x=3\ \mathrm{or\ }-4.\\x=-4\mathrm{\ is\ not\ true\ because\ }2x\ \mathrm{and}\ 2x+2\ \mathrm{must\ be\ positive.}\\\mathrm{Therefore\ the\ numbers\ are:}\ 2x= 2(3)=6\ \mathrm{and\ }2x+2=6+2=8.

Method 2:


\mathrm{Let}\ x\ \mathrm{and}\ (48)/(x)\ \mathrm{be\ the\ required\ even\ integers.\ They\ are\ consecutive,\ therefore:}\\x=(48)/(x)+2\\\mathrm{or,\ }x=(48+2x)/(x)\\\mathrm{or,\ }x^2=48+2x\\\mathrm{or,\ }x^2-2x-48=0\\\mathrm{or,\ }x^2+6x-8x-48=0\\\mathrm{or,\ }x(x+6)-8(x+6)=0\\\mathrm{i.e.\ }x=8\ \mathrm{or\ }-6\\


x\ \mathrm{cannot\ be\ -6\ because\ }x\ \mathrm{is\ positive\ according\ to\ our\ supposition.}\\\mathrm{\therefore First\ number,\ }x=8\ \mathrm{and\ second\ number=}(48)/(x)=(48)/(8)=6\\

Method 3:


\mathrm{Let\ }x\ \mathrm{and}\ y\ \mathrm{be\ the\ two\ required\ numbers.}\\\mathrm{As\ they\ are\ consecutive\ even\ numbers,}\\x=y+2....(1)\\\mathrm{The\ product\ of\ these\ numbers\ is\ 48,\ therefore,}\\xy=48.....(2)\\\mathrm{Substituting\ }x=y+2\ \mathrm{in\ equation(2),}\\y(y+2)=48\\\mathrm{or,\ }y^2+2y-48=0\\\mathrm{or,\ }y^2+8y-6y-48=0\\\mathrm{or,\ }y(y+8)-6(y+8)=0\\\mathrm{or,\ }(y-6)(y+8)=0\\\mathrm{i.e.\ }y=6\ \mathrm{or\ }-8.\\


\mathrm{As}\ x\ \mathrm{and\ }\ y\ \mathrm{are\ positive\ integers,\ }y\ \mathrm{cannot\ be\ -8.\ Therefore,\ }y=6.\\\mathrm{When\ }y=6,\ x=y+2=6+2=8.\\\mathrm{So\ the\ two\ numbers\ are\ 6\ and\ 8.}

You may consider any one number greater than the other in method 2 and 3.

User Nard
by
7.5k points
4 votes

Answer: 6 and 8

Explanation:

User AnkurSaxena
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories