The observed frequencies are approximately 624.59 Hz, 578.01 Hz, 579.89 Hz, and 624.21 Hz for scenarios a), b), c), and d) respectively.
Calculate the observed frequencies using the Doppler effect formulas.
Given:
- Emitted frequency (f) = 600 Hz
- Speed of sound (v) = 343 m/s
- Velocity of the ambulance

- Velocity of the cars

a) Frequency observed by the eastbound drivers as the ambulance approaches:
Using the formula for approaching:
![\[ f' = f \cdot \left( (v + v_o)/(v + v_s) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/7m7w0rlpjzfdzh21cst8ktrrb3mf12193y.png)
![\[ f' = 600 \, \text{Hz} \cdot \left( \frac{343 \, \text{m/s} + 15.8 \, \text{m/s}}{343 \, \text{m/s} + 28.9 \, \text{m/s}} \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/qmysj28wh3dj424l1qaz0uvo7xj3wbla81.png)
![\[ f' \approx 624.59 \, \text{Hz} \]](https://img.qammunity.org/2024/formulas/physics/high-school/o4bq0jnlscru4g1yivlrp02t3m7jfygbbx.png)
b) Frequency observed by the eastbound drivers after the ambulance passes them:
After the ambulance passes, the formula changes slightly to:
![\[ f' = f \cdot \left( (v - v_o)/(v - v_s) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/xor29ly0egouj0obiz9z6kkfp533ik00b0.png)
![\[ f' = 600 \, \text{Hz} \cdot \left( \frac{343 \, \text{m/s} - 15.8 \, \text{m/s}}{343 \, \text{m/s} - 28.9 \, \text{m/s}} \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/1x0zktvry3ftpslb883y10p0pkjigj0dp4.png)
![\[ f' \approx 578.01 \, \text{Hz} \]](https://img.qammunity.org/2024/formulas/physics/high-school/erdjdoq8pdzbb6kq1weyv4b0uhcue0mpwa.png)
c) Frequency observed by the westbound drivers as the ambulance approaches them:
When approaching, for the westbound drivers:
![\[ f' = f \cdot \left( (v + v_o)/(v - v_s) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/44h2n0ghgh49kothqh9norwoutdpv9nyk8.png)
![\[ f' = 600 \, \text{Hz} \cdot \left( \frac{343 \, \text{m/s} + 15.8 \, \text{m/s}}{343 \, \text{m/s} - 28.9 \, \text{m/s}} \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/7o4zycmg6rqgy42s8yai0vgnlwxkaijowc.png)
![\[ f' \approx 579.89 \, \text{Hz} \]](https://img.qammunity.org/2024/formulas/physics/high-school/7zmwg1ogtsm9e1l2esnk67giduyttddpwp.png)
d) Frequency observed by the westbound drivers after the ambulance passes them:
After the ambulance passes, for the westbound drivers:
![\[ f' = f \cdot \left( (v - v_o)/(v + v_s) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/zqfhpewsjntbns4nz2fq7n6kiy89phtet8.png)
![\[ f' = 600 \, \text{Hz} \cdot \left( \frac{343 \, \text{m/s} - 15.8 \, \text{m/s}}{343 \, \text{m/s} + 28.9 \, \text{m/s}} \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/js899u60exy47497bbxvhkg9jci9g6uccf.png)
![\[ f' \approx 624.21 \, \text{Hz} \]](https://img.qammunity.org/2024/formulas/physics/high-school/yzfph998iu8tknbep7syv6orpj1w3uufr5.png)
These are the calculated observed frequencies for each scenario based on the given information and the Doppler effect formulas.